Dilations, wandering subspaces, and inner functions
نویسندگان
چکیده
منابع مشابه
Refinable Functions with Non-integer Dilations
Refinable functions and distributions with integer dilations have been studied extensively since the pioneer work of Daubechies on wavelets. However, very little is known about refinable functions and distributions with non-integer dilations, particularly concerning its regularity. In this paper we study the decay of the Fourier transform of refinable functions and distributions. We prove that ...
متن کاملHyponormal matrices and semidefinite invariant subspaces in indefinite inner products
It is shown that, for any given polynomially normal matrix with respect to an indefinite inner product, a nonnegative (with respect to the indefinite inner product) invariant subspace always admits an extension to an invariant maximal nonnegative subspace. Such an extension property is known to hold true for general normal matrices if the nonnegative invariant subspace is actually neutral. An e...
متن کاملInner Ideals and Intrinsic Subspaces of Linear Pair Geometries
We introduce the notion of intrinsic subspaces of linear and affine pair geometries, which generalizes the one of projective subspaces of projective spaces. We prove that, when the affine pair geometry is the projective geometry of a Lie algebra introduced in [BeNe04], such intrinsic subspaces correspond to inner ideals in the associated Jordan pair, and we investigate the case of intrinsic sub...
متن کاملCharacteristic Functions and Joint Invariant Subspaces
Let T := [T1, . . . , Tn] be an n-tuple of operators on a Hilbert space such that T is a completely non-coisometric row contraction. We establish the existence of a “one-toone” correspondence between the joint invariant subspaces under T1, . . . , Tn, and the regular factorizations of the characteristic function ΘT associated with T . In particular, we prove that there is a non-trivial joint in...
متن کاملInner ideals and intrinsic subspaces in linear pair geometries
We introduce the notion of intrinsic subspaces of linear and affine pair geometries, which generalizes the one of projective subspaces of projective spaces. We prove that, when the affine pair geometry is the projective geometry of a Lie algebra introduced in [BeNe04], such intrinsic subspaces correspond to inner ideals in the associated Jordan pair, and we investigate the case of intrinsic sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2017
ISSN: 0024-3795
DOI: 10.1016/j.laa.2017.02.032